
QUANTIFYING FAILURE OF THE FTGT FOR
CERTAIN HOPF GALOIS STRUCTURES

LINDSAY CHILDS

0.1. Introduction. Let L/K be a Galois extension with Galois group
Γ an elementary abelian p group of order pn. Suppose L/K also has
an H-Hopf Galois structure of type G ∼= Γ. In my talk last year I
showed that the Galois correspondence from K-subHopf algebras of
H to intermediate fields was surjective if and only if the Hopf Galois
structure is the classical structure by the Galois group Γ. What I want
to do today is to try to quantify the failure of the FTGT in this setting.

This work is joint with Cornelius Greither. It arose from conversa-
tions we had after my talk here last year.

0.2. Caranti, della Volta, Sala. Let G be a finite abelian group of
order pn, written additively. Let λ : G → Perm(G) be the left regular
representation, λ(g)(h) = g + h. The normalizer in Perm(G) of λ(G)
is Hol(G) = λ(G) · Aut(G), the holomorph of G.

Let A = (G,+, ·) be a commutative nilpotent ring (without unit),
or radical ring, with additive group G. Define the circle operation
◦ : G×G→ G by

a ◦ b = a+ b+ a · b.
Define a map τ : (G, ◦)→ Perm(G) by τ(a)(g) = a◦g. Then τ is a one-
to-one homomorphism, whose image T = τ(G) is a regular subgroup
of Perm(G) (τ(G)(0) = G), and is contained in Hol(G).

This map from commutative nilpotent ring structures on (G,+)
to commutative regular subgroups of Hol(G) is bijective, by work of
Caranti, della Volta and Sala. That is, every commutative regular sub-
group of Hol(G) is the image of the circle group of some commutative
nilpotent ring structure on (G,+).

0.3. Now specialize to the case where G = (Fnp ,+) is elementary
abelian under addition, and we only consider commutative nilpotent
ring structures A = (G,+, ·) where Ap = 0. Then (G, ◦) will also be
an elementary abelian p-group.
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Let L/K be a Galois extension of fields with Galois group Γ where
Γ is an elementary abelian p-group of order pn. Let T = τ(G, ◦) be an
elementary abelian regular subgroup of Hol(G), coming from a com-
mutative nilpotent Fp-algebra structure A on (G,+). Let β : Γ→ T be
an isomorphism. Then corresponding to β is an embedding α : G →
Perm(Γ), whose image N is normalized by λ(Γ). So N corresponds to
an H-Hopf Galois structure on L/K, where H = (LN)Γ (Γ acts on L
via the action by the Galois group and on N by conjugation by λ(Γ)
in Perm(Γ)).

To examine the FTGT for the H-Hopf Galois structure on L/K we
compare the number of K-subHopf algebras of H to the number of
intermediate fields E with K ⊆ E ⊆ L.

0.4. The main result of [Ch17]. Since L/K is classically Galois
with Galois group Γ ∼= (Fnp ,+), the classical FTGT holds for L/K, so
the number of intermediate fields is equal to the number of subgroups
of Γ, = s(n), the number of subspaces of Fnp .

From [Ch17], the number of K-subHopf algebras of H is equal to the
number of ideals of the commutative nilpotent Fp-algebra A = (Fnp ,+, ·)
corresponding to the K-Hopf Galois structure on L/K.

The number of ideals of A is equal to the number of subspaces of A
if and only if the multiplication on A is trivial (ab = 0 for all a, b in A),
if and only if the Hopf Galois structure by H is the classical structure
given by the Galois group Γ. So for all other Hopf Galois structures
(for Γ elementary abelian), the FTGT fails.

0.5. Our question. How badly does the FTGT fail?
To try to answer that question, we take a commutative nilpotent

Fp-algebra of Fp-dimension n and ask, what can we say about i(A), the
number of ideals of A? How does it compare with s(A), the number of
subspaces of A?

Let

δ(t) =
t2

4
if t is even

=
t2 − 1

4
if t is odd

If dimFp A = n, then s(A) = s(n). We know that s(n) ≥ pδ(n) and is
a polynomial in p of degree δ(n).

0.6. Our main result. LetA be a (commutative) nilpotent Fp-algebra
of dimension n. Then An+1 = 0. Let e > 0 be minimal with Ae+1 = 0.
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Theorem 0.1. Let A be a commutative nilpotent Fp-algebra A with
Ae+1 = 0. Then

i(A) ≤ 2e− 1

pδ(e)
s(A).

0.7. A consequence for Hopf Galois structures. The upper bound
is of particular interest in the form

i(A)

s(A)
≤ 2e− 1

pδ(e)
.

Recall that δ(e) = b e2
4
c ≥ 1 for e ≥ 2. So for e ≥ 2, as p increases, the

ratio of ideals to subspaces approaches zero.
Corollary.

i(A)

s(A)
< .01

for
• e = 2, p ≥ 300
• e = 3, p ≥ 25
• e = 4, p ≥ 7
• all e, p with 5 ≤ e < p.

0.8. The upper bound strategy. The idea is the following. Let

G : {subspaces of A} → {ideals of A}

be the “ideal generated by” map. We ask: how big are the fibers
G−1(J) for J an ideal of A? How many subspaces of J generate J?

The answer depends on where the ideal sits in A.

0.9. A chain of annihilator ideals. Consider the chain

{0} = N0 ⊂ N1 ⊂ N2 ⊂ . . . ⊂ Ne = A

of annihilator ideals defined by

Nk := Annk(A) = {a ∈ A|x1x2 · · ·xka = 0 for all x1, . . . xk in A}.

For example. If J ⊂ N1, then G−1(J) = {J}, because every subspace
of N1 = Ann1(A) is an ideal of A. So |G−1(J)| = 1.

On the other hand, the ideal Ne = A itself is generated by at least
pδ(n) subspaces.
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0.10. Principal ideals. To get our inequality, we look at principal
ideals. We first observe:

Lemma: let J = G(〈x〉) = Fpx + Ax and let W0 = Ax. Then every
subspace U of J not contained in W0 contains x, so generates J .

Let dim J = q. Then the number of subspaces U of J not contained
in W0 is at least pδ(q) (a linear algebra exercise). So:

For J a principal ideal of dimension q, |G−1(J)| ≥ pδ(q).

0.11. Stratifying ideals. To get an lower bound on q = dim(J) for
J a principal ideal, we look at ideals J contained in Nt, not contained
in Nt−1.

Lemma: For each t, and each x in Nt\Nt−1, let q(x) be the dimension
of G({x}), and let qt be the minimum of q(x) for all x in Nt \ Nt−1.
Then qt ≥ t.

The idea is that if x is in Nt and not in Nt−1, then there is a sequence
of elements a1 . . . , at−1 in A so that a1a2 · · · at−1x 6= 0. Letting xi =
a1a2 · · · aix, each xi is not in Nt−(i+1) but is in Nt−i. So x, x1, . . . , xt−1

are linearly independent elements of G({x}).

0.12. Let Jt be the set of ideals J contained in Nt, not contained in
Nt−1.

For J in Jt, J contains an element x in Nt, not in Nt−1, hence
contains the principal ideal generated by x. So

Proposition: For J an ideal contained in Nt, not in Nt−1, the number
of subspaces that generate J is at least pδ(qt), where qt is the minimum
of the dimensions of principal ideals generated by x in Nt, not in Nt−1.

0.13. Counting. Since Nt is an ideal, every subspace of Nt generates
an ideal that is contained in Nt. So we have∑

J∈Jt

|G−1(J)| = s(Nt)− s(Nt−1).

Now |Jt| = i(Nt)− i(Nt−1).
For J in Jt, we observed that

|G−1(J)| ≥ pδ(qt)

where qt is the minimum dimension of principal ideals in Nt, not in
Nt−1. So replacing |G−1(J)| by pδ(qt) in our equation above gives

pδ(qt)(i(Nt)− i(Nt−1)) ≤ s(Nt)− s(Nt−1).
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0.14.

pδ(qt)(i(Nt)− i(Nt−1)) ≤ s(Nt)− s(Nt−1).

Dividing by pδ(qt) and summing over all t gives an upper bound for
i(A):

i(A) ≤
e−1∑
t=1

(p−δ(qt) − p−δ(qt+1))s(Nt) + p−δ(qe)s(Ne).

0.15. Completing the upper bound. To clean this up, we apply
the following general result connecting s(m) and s(n): For n ≥ m ≥ 0
arbitrary,

s(n) ≥ 1

2
pδ(n)−δ(m)s(m).

Using that and the inequality qt ≥ t yields our upper bound

i(A) ≤ 2e− 1

pδ(e)
s(A),

0.16. A lower bound on ideals? To get a more precise idea of the
size of the image of the Galois correspondence map for the Hopf Galois
structures we’re looking at, we seek a lower bound on i(A).

0.17. A lower bound. Recall that Nk is the k-th annihilator ideal
of A,

Nk = {a ∈ A|x1x2 · · ·xkx = 0 for all x1, . . . xk ∈ A}.

Let dimFp(Nk) = dk. Then 0 < d1 < d2 < . . . < de = n. Let tk =
dk − dk−1, and let tM = maxk tk. Then we have:

Theorem 0.2. i(A) ≥ λ(A), where

λ(A) = s(t1) + s(t2) + . . .+ s(te)− (e− 1).

0.18. Counting some ideals. We get the lower bound on i(A) by
identifying some ideals and counting them.

The chain of annihilator ideals is

{0} = N0 ⊂ N1 ⊂ N2 ⊂ . . . ⊂ Ne = A.

Let Wk be a subspace of A so that Nk = Wk⊕Nk−1. Then dim(Wk) =
tk = dk − dk−1 and

A = W1 ⊕W2 ⊕ . . .⊕We.

For Vk any subspace of Wk, the space Vk ⊕ Nk−1 is an ideal of A,
because Nk−1 is an ideal of A and aVk ⊂ aNk ⊆ Nk−1 for all a in A.
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Omitting the case Vk = 0 except when k = 0 gives us s(Wk) − 1 =
s(tk)− 1 ideals. So the number of ideals counted is

λ(A) = s(t1) + s(t2) + . . .+ s(te)− (e− 1).

For some A the lower bound is pretty good, as we’ll see.

0.19. An example. Let A = 〈x〉 with xe+1 = 0. Then dim(A) = e.
The lower bound λ(A) = e+ 1 since ti = 1 for all i, and s(1) = 2.
As for the upper bound, note that s(e) is a polynomial in p of degree

pδ(e) with leading coefficient 1 or 2 (depending on whether e is even or
odd), so in the upper bound

i(A) ≤ 2e− 1

pδ(e)
s(A) =

2e− 1

pδ(e)
s(e),

the ratio
(2e− 1)s(e)

pδ(e)
−→ 2e− 1 or 2(2e− 1)

as p→∞.
In fact, i(A) = e+1. So the lower bound is sharp and, since dim(A) =

e, the upper bound for large p converges to a constant not much larger
than i(A).

0.20. A binomial example. Let A be the binomial algebra of di-
mension 15,

A = 〈x1, x2, x3, x4〉
with x2

i = 0. Then

N1 = 〈x1x2x3x4〉,
N2 = 〈x1x2x3, x1x2x4, x1x3x4, x2x3x4〉,
N3 = 〈x1x2, x1x3, x1x4, x2x3, x4, x3x4〉,
N4 = 〈x1, x2, x3, x4〉 = A

Then e = 4. Our inequalities for i(A) yield

λ(A) ≤ i(A) ≤ 7

pδ(4)
s(15).

0.21.

λ(A) ≤ i(A) ≤ 7

pδ(4)
s(15),

Now the lower bound λ(A) satisfies

p9 < s(6) < λ(A) = s(1) + s(4) + s(6) + s(4)− 3 < p10

for p ≥ 3, and since p56 < 7s(15) < p57 for large p and δ(4) = 4, we
have

p9 ≤ i(A) ≤ p53.
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So for this example (and others), our upper and lower bounds for i(A)
are not close to each other.

0.22. Tweaking the upper bound. For some classes of examples
of algebras, the dimensions of principal ideals inside Nt, not in Nt−1

are bounded by qt > t.
For example, for a binomial algebra, every principal ideal in Nt,

not in Nt−1, has dimension at least 2t−1. Using this for our binomial
example of dimension 15 lowers the upper bound on i(A) from p53 to
p41. Still not very good.

0.23. A smaller example. I spent some time on examples, trying to
actually count the number of ideals.

Consider the triangular algebra A = 〈x, y〉 with A3 = 0 and basis
(x, y, x2, xy, y2). So e = 2.

The lower bound is

2p2 + 3p+ 6 ≤ i(A).

The upper bound is

i(A) ≤ 3

p
s(5) =

3

p
(2p6 + 2p5 + 6p4 + 6p3 + 6p2 + 4p+ 6).

The actual number of ideals is

i(A) = 3p2 + 4p+ 6.

0.24. Why is the upper bound so off? The issue is that our
method assumed that every ideal J contained in Nt, not in Nt−1 has
dimension the size of a principal ideal J with the same properties. But
that is not so. In this example, we have the following ideals:

A = G(x, y)

J1(a, d) = G(x+ ay + dy2)

J15(a) = G(x+ ay, y2)

J2(b) = G(y + bx2)

J23 = G(y, x2)

ideals of N1

(where a, d, b are parameters from Fp).
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0.25. The number of ideals of each type and the number of subspaces
that generate each ideal of the given type is given by the table:

ideals # of ideals fiber size
A 1 2p6 + p5 + 2p4 + p3 + p2 + 1

J1(a, d) p2 2p2 + p+ 1
J15(a) p p4 + p3 + p2 + 1
J2(b) p 2p2 + p+ 1
J23 1 p4 + p3 + p2 + 1

ideal of N1 2p2 + 2p+ 4 1

The p2 + p principal ideals J1(a, d) and J2(b) are each generated by
2p2 +p+1 subspaces. The p+1 non-principal ideals J23 and J15(a) are
each generated by p4 + p3 + p2 + 1 subspaces. And the ideal A itself is
generated by 2p6 +p5 +2p4 +p3 +p2 +1 subspaces. So our upper bound
on i(A) is weak because we considerably undercounted the fibers of the
non-principal ideals.

0.26. The binomial algebra on three generators. We did a sim-
ilar analysis for the binomial algebra of dimension 7, with three gener-
ators (e = 3). It has ∼ p12 subspaces. Our lower bound is

λ(A) = 4p2 + 4p+ 8.

The number of ideals is

i(A) = 7p2 + 4p+ 8,

while our best upper bound based on the dimensions of principal ideals
is

2

p−4
s(A) = 4p8 + 2p7 + . . . .

For this example, the number of subspaces of A is

s(A) = s(7) = 2p12 + 2p11 + 6p10 + 8p9 + . . . ,

G−1(A) = 2p12 + p11 + 2p10 + 2p9 + . . . ,

the fibers of the p2 + p + 1 non-principal ideals not contained in N2

account for ∼ p11 subspaces, and the remaining ideals account for ∼ p8

subspaces.

0.27. Conclusion. So for an algebra A with Ae 6= 0, Ae+1 = 0, under-
counting the subspaces that generate non-principal ideals not contained
in Ae−1 seeems to be the chief culprit in the weakness of the upper
bound. If we could more effectively count the sizes of non-principal
ideals and integrate them into a formula like∑

J∈Jt

|G−1(J)| = s(Nt)− s(Nt−1),
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we would likely have a better upper bound on i(A). But...

0.28. Bottom line. The upper bound on ideals that we found is good
enough to show how badly the FTGT fails for Hopf Galois structures
on elementary abelian Galois extensions L/K of order pn.

0.29. Caveat. I found this comment on the study of nilpotent alge-
bras:

From ”The Theorem of Wedderburn-Malcev...” by Rolf Farnsteiner:
https://www.math.uni-bielefeld.de/ sek/select/RF6.pdf
“Throughout, A denotes a finite dimensional algebra over a field k.

We let Rad(A) be the Jacobson (nilpotent) radical of A. Wedderburns
classical result tells us that the semisimple factor algebra A/ Rad(A)
is a direct sum of matrix algebras ...

“To understand the structure of A, two problems remain, namely,
• the determination of the structure of Rad(A), and
• the interaction of the constituents A/ Rad(A) and Rad(A).
The former usually is a hopeless endeavor....”

0.30. Play. Some examples to play with:
• Poonen’s list of isomorphism types of local nilpotent algebras of

dimension ≤ 5
• binomial algebras
• “triangular” algebras A = 〈x, y〉 with Ae+1 = 0
• generalized triangular algebras A = 〈x1, x2, . . . xr〉 with Ae+1 = 0,
• truncated diagonal algebras A = 〈x, y〉 with xn = ym = 0.
• More generally, algebras A in which all relations are monomials

(such as the last four examples and 14 of Poonen’s 25 examples of
dimension 5 for p ≥ 3).

Thank you.


